Биологическая роль трансаминаз
Страница 1

Аминокислоты, не использованные для синтеза белков и других производных, не накапливаются в организме в больших количествах. Они подвергаются различным ферментативным превращениям и, в конечном счете, распаду /32/. Важную роль в азотистом обмене играют процессы перехода одних аминокислот на другие, в результате ферментативных реакций переаминирования. При этом происходит обратимый перенос NH2 – группы от L – аминокислоты на L – кетокислоту без промежуточного образования аммиака. Таким образом, в реакции переаминирования участвуют L – аминокислота как донор и L – кетокислота как акцептор аминогруппы. Эти реакции катализируются особыми ферментами трансаминазами. Коферментом трансаминаз является пиридоксаль – 5׳ – фосфат, который и является промежуточным переносчиком аминогруппы от аминокислоты на кетокислоту/27/.

Широкое распространение трансаминаз в животных тканях, у микроорганизмов и растений, их высокая резистентность к физическим, химическим и биологическим факторам, абсолютная стереохимическая специфичность по отношению к L - и Д – аминокислотам, высокая каталитическая активность в процессах переаминирования послужили предметом детального исследования роли этих ферментов в обмене аминокислот/33/. Тип катализируемой химической реакции в сочетании с названием субстрата служит основой для систематического наименования ферментов. Согласно Международной классификации трансаминазы относят к 2 классу трансфераз, 4 подклассу – аминотрансферазы; наименование их составляется по форме «донор – транспортируемая группа – трансфераза» /34/. А. Е. Браунштейн выдвинул гипотезу о возможности существования в живых тканях не прямого пути дезаминирования аминокислот через реакции переаминирования, названного им трансдезаминированием. Основой для этой гипотезы послужили данные о том, что из всех природных аминокислот в животных тканях с высокой скоростью дезаминируются только L – глутаминовая кислота. Согласно этой теории большинство природных аминокислот сначала реагируют с L – кетоглутаровой кислотой в реакции переаминирования с образованием глутаминовой кислоты к соответствующей кетокислоте/30/. Образовавшаяся глутаминовая кислота подвергается окислительному дезаминированию под действием глутаматдегидрогеназы. Механизм трансдезаминирования можно представить в виде следующей схемы /13/:

R1- CH (NH2)-COOH L-кетоглутарат НАДН2 + NH3

R1- CO- COOH L-глутамат НАД + Н2О

трансаминаза глутаматдегидрогеназа

Обе реакции (переаминирование и дезаминирование глутаминовой кислоты) являются обратимыми, создаются условия для синтеза любой аминокислоты, если в организме имеются соответствующие L – кетокислоты. Организм животных и человека не обладает способностью синтеза углеводородного скелета (L - кетокислот) так называемых незаменимых аминокислот, этой способностью обладают только растения и многие микроорганизмы.

В живых организмах осуществляется синтез природных аминокислот из L – кетокислот и аммиака, этот процесс был назван А. Е. Браунштейном трансреаминированием. Сущность его сводится к восстановительному аминированию L – кетоглутаровой кислоты, с образованием глутаминовой кислоты, и к последующему переаминированию глутамата с любой L – кетокислотой. В результате образуется L – аминокислота, соответствующая исходной кетокислоте, и вновь освобождается L – кетоглутаровая кислота, которая может акцептировать новую молекулу аммиака/35/.Схематически роль трансаминаз в дезаминировании в биосинтезе аминокислот можно представить в следующем виде/28/:

L-Аминокислота Пиридоксальфосфат

L-Глутамат НАД

R1-CH(NH2)-COOH O=CH-ПФ

HOOC-(CH2)2-CH(NH2)-COOH НАДФ

Трансаминаза

Страницы: 1 2


Это интересно:

Химические свойства белков
Белки пищевых продуктов представляют собой весьма сложные высокомолекулярные соединения, и эти химические свойства белков состоят из различных аминокислот, которых насчитывают до 80. Однако в большинстве продуктов содержится около 20 амин ...

Фотоморфогенез
Путь к пониманию фотоморфогенеза открыло изучение светочувствительности семян латука. Семена эти прорастают при непродолжительным облучении их красным светом, но последующее действие на них света крайнего красного участка спектра предотвр ...

Значение и задачи биотехнологии
В исследованиях по биотехнологии разрабатываются методы изучения генома, идентификации генов и способы переноса генетического материала. Одно из главных направлений биотехнологии - генетическая инженерия. Генно-инженерными методами создаю ...