Антиоксиданты в живом организме
Страница 1

В живом организме функционирует внутренняя система антиоксидантной защиты, представленная ферментами (глутатионпероксидаза, супероксиддисмутаза, каталаза и глутатионредуктаза) и низкомолекулярными соединениями (тиоловые соединения, мочевая кислота, некоторые пептиды). Помимо этого, многие низкомолекулярные соединения, образующиеся в организме или поступающие с пищей (водорастворимые или жирорастворимые), способны служить в качестве компонентов антиоксидантной защиты клеток, внутри- и межклеточной жидкости (аскорбиновая кислота, мочевая кислота, токоферол, флавоноиды, каротиноиды, и др.). Неферментные АО- низкомолекулярные соединения, перехватчики радикалов и активных кислородных метаболитов. Общим признаком очень многих АО является их способность выступать в качестве донора протона функциональной группы. По строению функциональной группы важнейшие для человека и млекопитающих низкомолекулярные АО можно разделить на соединения, содержащие SH-группы (тиоловые АО) и ОН- группы (фенольные АО) [15].

Тиоловые соединения

В свете современных данных становится все более очевидной ведущая роль тиоловых соединений в механизме антиоксидантной защиты. К такому заключению приводят несколько обстоятельств [19]. К примеру, основная часть функциональных компонентов антиоксидантной системы представлена веществами тиоловой природы. Так, в состав неферментного звена входят низкомолекулярные тиолы (глутатион, тиоредоксин и др.) и тиол содержащие белки, которые по некоторым данным [32] даже более реактивны по отношению к АКМ, чем глутатион. К тиоловым компонентам сыворотки крови млекопитающих относятся альбумины, представляющие собой важные внеклеточные АО [28]. Ферменты, принимающие участие в противоокислительной защите, либо относятся к собственному числу тиоловых энзимов, либо нуждаются в присутствии тиолов для проявления каталитической активности. Во-вторых, уникальные химические свойства тиолов наделяют их высокой антиокислительной способностью [15].

Фенольные соединения,

имеющие в своей структуре ароматическое кольцо с несколькими ОН-группами, также являются мощными перехватчиками радикалов, эффективность которых возрастает в зависимости от количества гидроксильных заместителей цикле [15].

Важную роль в защите клеток, и главным образом, их мембран от окислительных повреждений играют токоферолы

(ТФ), антиокислительное действие которых реализуется двумя путями. Во-первых, ТФ способны стабилизировать мембраны за счет хорошей растворимости в фосфолипидах и взаимодействия их с жирнокислыми цепями, что увеличивает плотность упаковки фосфолипидов в мембране и снижает вероятность их окисления. Вторым проявлением антиоксидантных свойств токоферолов является их способность перехватывать АКМ и ингибировать ПОЛ, в результате чего образуются малоактивные токоферильные радикалы, которые легко восстанавливаются аскорбиновой кислотой, убихиноном или мочевой кислотой, что обеспечивает регенерацию витамина Е [11, 22].

Одним из наиболее важных водорастворимых низкомолекулярных АО считают аскорбиновую кислоту

, действие которой распространяется на широкий спектр АКМ. Способность аскорбиновой кислоты восстанавливать токоферил-радикалы обеспечивает синергическое действие системы аскорбат-токоферол в гетерогенных средах, содержащих водную и липидную фазы [24].однако в присутствии ионов металлов переменой валентности аскорбиновая кислота способна восстанавливать их, и, таким образом проявлять прооксидантное действие [8].

Мочевая кислота

, помимо способности хелатировать ионы железа и меди, обладает прямым антиоксидантным действием за счет способности ингибировать оксиды азота, супероксид-анион радикал, гидроксильный радикал и синглетный кислород, а также гемовые оксиданты. Реакция мочевой кислоты с гидроксильным радикалом при физиологических рН в большинстве случаев приводит к конформационной перестройке молекулы с образованием аллантоина, в свою очередь способного окисляться гидроксильным радикалом до парабановой кислоты [11]. Ввиду высокого содержания мочевой кислоты в плазме крови (0,12-0,48 мМ), некоторые исследователи считают, что на ее долю приходится 35-65% защиты ЛП

Страницы: 1 2


Это интересно:

Аэробный путь ресинтеза АТФ
Аэробный путь ресинтеза АТФ - это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на мол ...

Радиальная скорость роста грибов на естественных субстратах
На рисунке 3 приведены зависимости радиальной скорости роста от времени у исследуемых грибов на различных природных целлюлозных материалах. листья камыш кора опилки сено Рис. 3. Радиальная скорость роста ...

Влияние различных факторов среды на исследуемый объект. Влияние температуры на жизненные функции данного объекта
Температура воды является одним из важнейших факторов, оказывающих воздействие на отправление жизненных функций рыбы, определяющих ее рост и развитие. Этот фактор действует на рыбу как непосредственно – изменяя интенсивность ферментативны ...