Отличие синергетического и информационного подходов
Страница 1

Материалы » Эволюционно-синергетическая парадигма » Отличие синергетического и информационного подходов

В основу теории информации положен предложенный К.Шенноном метод исчислений количества новой (непредсказуемой) и избыточной (предсказуемой) информации, содержащейся в сообщениях, передаваемых по каналам технической связи.

Предложенный Шенноном метод измерения количества информации оказался настолько универсальным, что его применение не ограничивается теперь узкими рамками чисто технических приложений.

Вопреки мнению самого К.Шеннона, предостерегавшего ученых против поспешного распространения предложенного им метода за пределы прикладных задач техники связи, этот метод стал находить все более широкое примение в исследованиях и физических, и биологических, и социальных систем .

Ключом к новому пониманию сущности феномена информации и механизма информационных процессов послужила установленная Л.Бриллюэном взаимосвязь информации и физической энтропии. Эта взаимосвязь была первоначально заложена в самый фундамент теории информации, поскольку для исчисления количества информации Шеннон предложил использовать заимствованную из статистической термодинамики вероятную функцию энтропии.

В статистической физике с помощью вероятностной функции энтропии исследуются процессы, приводящие к термодинамическому равновесию, при котором все состояния молекул (их энергии, скорости) приближаются к равновероятным, а энтропия при этом стремится к максимальной величине.

Благодаря теории информации стало очевидно, что с помощью той же самой функции можно исследовать и такие далекие от состояния максимальной энтропии системы, как, например, письменный текст.

Еще один важный вывод заключается в том, что

с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельной упорядоченности (жесткой детерминации), которому соответствует единственно возможное состояние ее элементов.

При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и молекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллектуальных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычисляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным значением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, которые в своей совокупности образуют эти системы.

Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем.

Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия относящихся к различным уровням сложности информационных систем.

Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, перекодировки поступающих из внешнего мира сигналов, информационными каналами связи. Хранимая в них информация как бы «размазана» по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упорядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур.

Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, сумевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем.

Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком информационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многоклеточных организмах помимо информационной системы наследственности действуют специализированные органы хранения информации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слуховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм.

Страницы: 1 2


Это интересно:

Указать черты сходства и различия членистоногих и кольчатых червей. На чем основано разделение этих типов на классы? Показать значение паукообразных и насекомых в медицине и сельском хозяйстве, назв
Сходство членистоногих и кольчатых червей заключается в таких признаках, как членистость тела, брюшная нервная цепочка, наличие кровеносной системы. Также родство и происхождение от древних кольчатых червей. Различия их заключается в том ...

Наука как основной фактор ноосферы
Несколько необычен подход Вернадского к науке. Он ее рассматривал как геологическую и историческую силу, изменяющую биосферу и жизнь человечества. Она является тем основным звеном, посредством которого углубляется единство биосферы и чело ...

Причины снижения продуктивности Азовского моря
К сожалению, огромная слава Азова уже в прошлом. За последнее время положение с рыбными запасами значительно ухудшилось. Море скудеет на глазах, в рыболовецких сетях все меньше крупной рыбы и все больше мелкой рыбешки: тюльки, хамсы, бычк ...